147
LLMs Will Always Hallucinate, and We Need to Live With This
arxiv.orgAs Large Language Models become more ubiquitous across domains, it becomes important to examine their inherent limitations critically. This work argues that hallucinations in language models are not just occasional errors but an inevitable feature of these systems. We demonstrate that hallucinations stem from the fundamental mathematical and logical structure of LLMs. It is, therefore, impossible to eliminate them through architectural improvements, dataset enhancements, or fact-checking mechanisms. Our analysis draws on computational theory and Godel's First Incompleteness Theorem, which references the undecidability of problems like the Halting, Emptiness, and Acceptance Problems. We demonstrate that every stage of the LLM process-from training data compilation to fact retrieval, intent classification, and text generation-will have a non-zero probability of producing hallucinations. This work introduces the concept of Structural Hallucination as an intrinsic nature of these systems. By establishing the mathematical certainty of hallucinations, we challenge the prevailing notion that they can be fully mitigated.



LLMentalist is a mandatory read.
Stop making LLMs happen, we don’t need energy hungry bullshit generators for anything.
There are so many more important AIs that need attention and funding to help us with real problems.
LLMs won’t solve anything.
There is a lot of hype around LLMs, and other forms of AI certainly should be getting more attention, but arguing that this tech no value is simply disingenuous. People really need to stop perseverating over the fact that this tech exists because it’s not going anywhere.
Any benefits are by far outweighted by the cost and dangers.
Tell me more about the value when every LLM company is hemorrhaging money.
You seem to have a very US centric perspective on this tech the situation in China looks to be quite different. Meanwhile, whether you personally think the benefits are outweighed by whatever dangers you envision, the reality is that you can’t put toothpaste back in the tube at this point. LLMs will continue to be developed. The only question is how that’s going to be done and who will control this tech. I’d much rather see it developed in the open.
You dense motherfucker.
No LLMs are being developed in the open.
Even provided weights mean nothing.
It’s not knowledge LLMs retain, just the ingressed text.
LLMs should be skipped after confirming that they are indeed a dead end they always were. And the entire world should focus on anything else.
You’re such an angry little ignoramus. The GPT-NeoX repo on GitHub is the actual codebase they used to train these models. They also open-sourced the training data, checkpoints, and all the tools.
However, even if you were right that the weights were worthless, which they’re obviously not, and there were no open projects which there are, the solution would be to develop models from scratch in the open instead of screeching at people and pretending this tech is just going to go away because it offends you personally.
And nobody says LLMs are anything other than Markov chains at a fundamental level. However, just like Markov chains themselves, they have plenty of real world uses. Some very obvious ones include doing translations, generating subtitles, doing text to speech, and describing images for visually impaired. There are plenty of other uses for these tools.
I love how you presumed to know better than the entire world what technology to focus on. The megalomania is absolutely hilarious. Like all these researchers can’t understand that this tech is a dead end, it takes the brilliant mind of some lemmy troll to figure it out. I’m sure your mommy tells you you’re very special every day.
@msage @yogthos I don’t know if I agree 100% with this, but I do like what you’re saying.
It seems like all the AI companies are simply hoping AGI emerges from it and nobody is doing the actual research to make that happen.
People were researching it when I was a child and I suspect they’ll still be researching it when I’m collecting my pension.
Again, this is a very US centred perspective. I highly urge you to watch this interview with the Alibaba cloud founder on how this tech is being approached in China https://www.youtube.com/watch?v=X0PaVrpFD14